
How to AI (Almost) Anything
Lecture 11 – Reinforcement Learning and Interaction

Paul Liang
Assistant Professor

MIT Media Lab & MIT EECS

https://pliang279.github.io
ppliang@mit.edu

@pliang279

https://pliang279.github.io/
mailto:ppliang@cs.cmu.edu

Assignments for This Coming Week

This Thursday (5/8): final project presentations.

- Class from 1-3pm, let us know any time constraints.

Final project reports due 5/20 – 12 days to incorporate feedback from presentations

Meet with me and TAs today after class.

2

Lecture Topics (subject to change, based on student interests and course discussions)

Module 1: Foundations of AI

Week 1 (2/4): Introduction to AI and AI research

Week 2 (2/11): Data, structure, and information

Week 4 (2/25): Common model architectures

Spatial Hierarchical Epoch

Lo
ss

3

Lecture Topics (subject to change, based on student interests and course discussions)

Module 2: Foundations of multimodal AI

Week 5 (3/4): Multimodal connections and alignment

Week 6 (3/11): Multimodal interactions and fusion

Week 7 (3/18): Cross-modal transfer

𝑦

𝑦

4

Lecture Topics (subject to change, based on student interests and course discussions)

Module 3: Large models and modern AI

Week 9 (4/1): Pre-training, scaling, fine-tuning LLMs

Week 11 (4/15): Large multimodal models

Week 12 (4/22): Modern generative AI

An armchair in

the shape of an

avocado

5

Lecture Topics (subject to change, based on student interests and course discussions)

Module 4: Interactive AI

Week 14 (5/6): RL, reasoning, and interactive AI

Week 15 (5/13): Human-AI interaction and safety

online assistant icon

6

https://thenounproject.com/icon/online-assistant-4116693/

Today’s lecture

Basics of reinforcement learning1

2 Modern RL for LLM alignment and reasoning

3 Interactive LLM agents

7

Learning a Policy – RL basics

8

Learning a Policy – RL basics

Goal:

Return:

Policy:

An MDP is defined by:

 Set of states 𝑆.
 Set of actions 𝐴.
 Transition function 𝑃(𝑠′|𝑠, 𝑎).
 Reward function 𝑟(𝑠, 𝑎, 𝑠′).
 Start state 𝑠0.
 Discount factor 𝛾.
 Horizon 𝐻.

9

RL vs Supervised Learning

• Sequential decision making

• Maximize cumulative reward

• Sparse rewards

• Environment maybe unknown

• One-step decision making

• Maximize immediate reward

• Dense supervision

• Environment always known

Reinforcement Learning Supervised Learning

10

Intersection Between RL and Supervised Learning
Imitation learning

Perform supervised learning by predicting expert action

Obtain expert trajectories (e.g. human driver/video demonstrations):

1. Distribution mismatch
2. Hard to recover from suboptimal states
3. Expert trajectories not always available

11

Model-based RL as Exploring a Tree

+1

𝑎1𝑠1 𝑠2 𝑎2 𝑠3 …

+100
-1

+2

+3

+1

𝜋 which action to take from each s

State-value function: how much total reward
should I expect following 𝜋 from s?

Action-value function: how much total reward
should I expect taking a, then following 𝜋, from s?

𝑉𝜋 𝑠1 = 99

𝑄𝜋 𝑠1, up = 3

𝑉∗ 𝑠1 = 99

𝑄∗ 𝑠1, up = 4

12

𝑄𝜋 𝑠1, down = 99

Optimal policy can be derived
given Q or V: tree search problem

Qs and Vs are interchangeable

RL Overview – Model Based vs Policy Based

13

Model-based RL Policy-based RL

RL Overview – Model Based vs Policy Based
Aspect Model-Based RL Policy-Based RL

What it learns
A model of the environment (transition
dynamics + rewards)

A policy (mapping from states to actions)

Approach Plan actions using a learned model Learn actions directly through experience

Planning Yes — simulates future steps before acting No — reacts based on current policy

Sample Efficiency High — can simulate "imaginary" experiences
Lower — requires real interaction with
environment

Complexity
Higher — requires accurate modeling and
planning

Lower — simpler learning loop

Adaptability Adapts quickly if model is accurate
May require retraining if environment
changes

Examples Dyna-Q, MuZero, PETS, MPC, PlaNet PPO, REINFORCE, A3C, TRPO, SAC

Strengths Efficient, powerful when model is good
More robust in complex, hard-to-model
environments

Weaknesses Prone to model errors ("model bias") Needs more data and time to converge

Real-world analogy
Learning the rules of a game and planning
your strategy

Learning to ride a bike by trial and error

Use cases
Robotics, planning, games with known
structure

Continuous control, high-dimensional spaces,
black-box systems

14

Policy Gradients

From Link

15

https://dribbble.com/shots/6426030-Pong/attachments/6426030-Pong?mode=media

Pong from Pixels

Network sees +1 if it scored a point, and -1 if it was scored against.
Can we train a network with this?

Up or Down

16

Pong from Pixels

Suppose we have training labels?

෍

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)

Maximize

But we don’t have training labels

17

Let’s act according to our current policy

Run - 1

Run - 2

Run - 3

18

Let’s act according to our current policy

Run - 1

Run - 2

Run - 3

Win

Lose

Lose

19

Let’s act according to our current policy

Win

Lose

Lose

෍

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

−1 ෍

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

−1 ෍

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

20

For a General Case

Win

Lose

Lose

෍

𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

෍

𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

෍

𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

21

Reinforce Algorithm

𝜖-greedy

22

Policy Gradients

If 𝑟(𝜏) is positive, increase the probability If 𝑟(𝜏) is negative, decrease the probability

But this suffers from high variance

23

Policy Gradients

The raw reward may not be very meaningful.

What is important then? Whether a reward is higher or lower than what you expect.

-- Compare to a baseline, and use relative improvement

e.g. exponential moving average of the rewards.

24

A better baseline: want to push the probability of an action from a state, if this action was
better than the expected value of what we should get from that state.

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if the advantage function A(s,a) = Q(s,a) - V(s) is
large. Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Actor-Critic Methods

25

Actor: decides what actions to take

Critic: evaluates how good the action is

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]

Actor-Critic Methods

Advantage function A(s,a)

Two models: actor learns the policy and critic learns the value of states and actions

26

Proximal Policy Optimization

Restrict each update to be small -> stable training

[Schulman et al. Trust Region Policy Optimization, ICML 2015]
[Schulman et al. Proximal Policy Optimization, 2017]

2 new algorithms:
1. Trust region policy optimization limits the KL divergence (distance)
between new and old policies.
2. Proximal policy optimization further approximates of KL divergence
by clipping the policy gradient.

27

Reinforcement Learning from Human Feedback

[Christiano et al. Deep reinforcement learning from human preferences. NeurIPS 2017]

Step 0: Pre-train LLM and perform supervised fine-tuning;
Step 1: For each prompt, treat the LLM as a policy and sample multiple responses from the model;
Step 2: Humans rank these outputs by quality;
Step 3: Train a reward model to predict human preferences / ranking, given full model responses;
Step 4: Use RL (e.g. PPO, GRPO) to fine-tune the model to maximize the reward model’s scores.

Response 1

Response 2

Response 3

Reward?

Reward?

Reward?

28

Human Ranking and Reward Model

Can’t have humans write gold answers to everything, so train a reward model to predict human preferences

29

Human preferences are noisy and uncalibrated
Solution: Relative preference tuning via pairwise comparisons

30

x

Cambridge is a historic city in

Cambridgeshire, England, located on

the River Cam about 55 miles north of

London, with a population of 145,700

and a broader built-up area housing

about 181,137 people. It was a

significant trading center in Roman

and Viking times, received its first

town charters in the 12th century, and

officially became a city in 1951.

Cambridge is a tiny village

in northern England with

absolutely no historical

significance. It has never

been granted any form of city

status.

is better than

Human Ranking and Reward Model

30

The RL Part: PPO
3 components:

1. Actor model/policy: LLM that has been pre-trained and supervised fine-tuned;
2. Reward model: Trained and frozen model that predicts human preference as a scalar reward, given full
model responses;
3. Value model/critic: Learnable value function takes in partial model responses and predicts scalar reward.

Recall Actor-critic models!!

Actor: decides what actions to take

Critic: evaluates how good the action is

31

The RL Part: PPO
Algorithm:
1. Generate responses: LLM produces multiple responses for a given prompt;
2. Score responses: The reward model assigns reward for each response;
3. Compute advantages A(s,a) = Q(s,a) - V(s). How much better a specific action a (i.e., word) is compared
to an average action the policy will take in state s (i.e., prompt + generated words so far).
4. Optimize policy: Update the LLM by optimizing the PPO objective (KL + clip to penalize large changes);
5. Update value: train the value function to be better at predicting the rewards given partial responses.

32

GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]

33

GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]

Key differences:
1. Group of responses used to compute advantage and gradient updates.
2. No learned value function, just simple statistics of rewards over a group.
3. Abandon reward models and use rule-based verifiers (binary checks, test-cases, length, format).

34

- Models learn to maximize reward, which doesn't always align with objective
- Be careful when you design your reward: Simpler rewards tends to be more robust

35

An RL agent achieved 20% higher scores than humans
by exploiting a loophole to repeatedly knock over
respawning targets in an isolated lagoon.

An LLM hacks a chess engine for itself to win the game.

35

[OpenAI. Faulty reward functions in the wild, https://openai.com/index/faulty-reward-functions/]

Reward Hacking

https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/

GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]

36

Direct Preference Optimization
DPO is more efficient in terms of compute, speed, and engineering efforts.
DPO does not need to train a reward model, and during policy training it doesn’t
decode online responses (which is usually slow) or train an additional value model.

PPO trains on online data generated by the current policy, while DPO trains on static,
pre-generated offline data. This may limit exploration in DPO and hurt the training.

37

[Rafailov et al. Direct preference optimization: Your language model is secretly a reward model. NeurIPS 2023]

Tips and Training for Reinforcement Learning

1. Sanity Check with Fixed Policy

2. Monitor KL Divergence (in PPO-like algorithms)

3. Plot Entropy Over Time

4. Use Greedy Rollouts for Evaluation

5. Debug Value Function Separately: Visualize predicted vs. actual return

6. Gradient Norm Clipping is Crucial

38

Tips and Training for Reinforcement Learning

7. Check Advantage Distribution

8. Train on a Frozen Replay Buffer

9. Use Curriculum Learning: Gradually increase task difficulty or reward sparsity

10. Watch for Mode Collapse in MoE or Multi-Head Policies

39

Assignments for This Coming Week

This Thursday (5/8): final project presentations.

- Class from 1-3pm, let us know any time constraints.

Final project reports due 5/20 – 12 days to incorporate feedback from presentations

Meet with me and TAs today after class.

40

	Default Section
	Slide 1: How to AI (Almost) Anything Lecture 11 – Reinforcement Learning and Interaction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

