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Assignments for This Coming Week

This Thursday (5/8): final project presentations.

- Class from 1-3pm, let us know any time constraints.

Final project reports due 5/20 – 12 days to incorporate feedback from presentations 

Meet with me and TAs today after class.
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Lecture Topics (subject to change, based on student interests and course discussions)

Module 1: Foundations of AI

Week 1 (2/4): Introduction to AI and AI research

Week 2 (2/11): Data, structure, and information

Week 4 (2/25): Common model architectures

Spatial Hierarchical Epoch

Lo
ss
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Lecture Topics (subject to change, based on student interests and course discussions)

Module 2: Foundations of multimodal AI

Week 5 (3/4): Multimodal connections and alignment

Week 6 (3/11): Multimodal interactions and fusion

Week 7 (3/18): Cross-modal transfer

𝑦

𝑦
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Lecture Topics (subject to change, based on student interests and course discussions)

Module 3: Large models and modern AI

Week 9 (4/1): Pre-training, scaling, fine-tuning LLMs

Week 11 (4/15): Large multimodal models

Week 12 (4/22): Modern generative AI

An armchair in 

the shape of an 

avocado
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Lecture Topics (subject to change, based on student interests and course discussions)

Module 4: Interactive AI

Week 14 (5/6): RL, reasoning, and interactive AI

Week 15 (5/13): Human-AI interaction and safety

online assistant icon
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https://thenounproject.com/icon/online-assistant-4116693/


Today’s lecture

Basics of reinforcement learning1

2 Modern RL for LLM alignment and reasoning

3 Interactive LLM agents
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Learning a Policy – RL basics
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Learning a Policy – RL basics

Goal:

Return:

Policy:

An MDP is defined by:

 Set of states 𝑆.
 Set of actions 𝐴.
 Transition function 𝑃(𝑠′|𝑠, 𝑎).
 Reward function 𝑟(𝑠, 𝑎, 𝑠′). 
 Start state 𝑠0.
 Discount factor 𝛾.
 Horizon 𝐻.
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RL vs Supervised Learning

• Sequential decision making

• Maximize cumulative reward

• Sparse rewards

• Environment maybe unknown

• One-step decision making

• Maximize immediate reward

• Dense supervision

• Environment always known

Reinforcement Learning Supervised Learning
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Intersection Between RL and Supervised Learning
Imitation learning

Perform supervised learning by predicting expert action

Obtain expert trajectories (e.g. human driver/video demonstrations):

1. Distribution mismatch 
2. Hard to recover from suboptimal states
3. Expert trajectories not always available
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Model-based RL as Exploring a Tree

+1

𝑎1𝑠1 𝑠2 𝑎2 𝑠3 …

+100
-1

+2

+3

+1

𝜋   which action to take from each s

State-value function: how much total reward 
should I expect following 𝜋 from s?

Action-value function: how much total reward
should I expect taking a, then following 𝜋, from s?

𝑉𝜋 𝑠1 = 99

𝑄𝜋 𝑠1, up = 3

𝑉∗ 𝑠1 = 99

𝑄∗ 𝑠1, up = 4
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𝑄𝜋 𝑠1, down = 99

Optimal policy can be derived 
given Q or V: tree search problem

Qs and Vs are interchangeable



RL Overview – Model Based vs Policy Based
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Model-based RL Policy-based RL



RL Overview – Model Based vs Policy Based
Aspect Model-Based RL Policy-Based RL

What it learns
A model of the environment (transition 
dynamics + rewards)

A policy (mapping from states to actions)

Approach Plan actions using a learned model Learn actions directly through experience

Planning Yes — simulates future steps before acting No — reacts based on current policy

Sample Efficiency High — can simulate "imaginary" experiences
Lower — requires real interaction with 
environment

Complexity
Higher — requires accurate modeling and 
planning

Lower — simpler learning loop

Adaptability Adapts quickly if model is accurate
May require retraining if environment 
changes

Examples Dyna-Q, MuZero, PETS, MPC, PlaNet PPO, REINFORCE, A3C, TRPO, SAC

Strengths Efficient, powerful when model is good
More robust in complex, hard-to-model 
environments

Weaknesses Prone to model errors ("model bias") Needs more data and time to converge

Real-world analogy
Learning the rules of a game and planning 
your strategy

Learning to ride a bike by trial and error

Use cases
Robotics, planning, games with known 
structure

Continuous control, high-dimensional spaces, 
black-box systems
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Policy Gradients

From Link
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https://dribbble.com/shots/6426030-Pong/attachments/6426030-Pong?mode=media


Pong from Pixels

Network sees +1 if it scored a point, and -1 if it was scored against.
Can we train a network with this? 

Up or Down

16



Pong from Pixels

Suppose we have training labels?



𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)

Maximize

But we don’t have training labels
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Let’s act according to our current policy

Run - 1

Run - 2

Run - 3
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Let’s act according to our current policy

Run - 1

Run - 2

Run - 3

Win 

Lose 

Lose 
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Let’s act according to our current policy

Win 

Lose 

Lose 



𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

−1 

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize

−1 

𝑖

log 𝑝 𝑦𝑖 𝑥𝑖)Maximize
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For a General Case

Win 

Lose 

Lose 



𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize



𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize



𝑖

𝑟𝑖log 𝑝 𝑦𝑖 𝑥𝑖)Maximize
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Reinforce Algorithm

𝜖-greedy
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Policy Gradients

If 𝑟(𝜏) is positive, increase the probability If 𝑟(𝜏) is negative, decrease the probability

But this suffers from high variance
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Policy Gradients

The raw reward may not be very meaningful.

What is important then? Whether a reward is higher or lower than what you expect.

-- Compare to a baseline, and use relative improvement

e.g. exponential moving average of the rewards. 
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A better baseline: want to push the probability of an action from a state, if this action was 
better than the expected value of what we should get from that state.

Recall: Q and V - action and state value functions!

We are happy with an action a in a state s if the advantage function A(s,a) = Q(s,a) - V(s) is 
large. Otherwise we are unhappy with an action if it’s small.

Using this, we get the estimator:

Actor-Critic Methods
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Actor: decides what actions to take

Critic: evaluates how good the action is 

[Minh et al., Asynchronous Methods for Deep Reinforcement Learning. ICML 2016]

Actor-Critic Methods

Advantage function A(s,a)

Two models: actor learns the policy and critic learns the value of states and actions
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Proximal Policy Optimization

Restrict each update to be small -> stable training

[Schulman et al. Trust Region Policy Optimization, ICML 2015]
[Schulman et al. Proximal Policy Optimization, 2017]

2 new algorithms:
1. Trust region policy optimization limits the KL divergence (distance) 
between new and old policies.
2. Proximal policy optimization further approximates of KL divergence 
by clipping the policy gradient.
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Reinforcement Learning from Human Feedback

[Christiano et al. Deep reinforcement learning from human preferences. NeurIPS 2017]

Step 0: Pre-train LLM and perform supervised fine-tuning;
Step 1: For each prompt, treat the LLM as a policy and sample multiple responses from the model;
Step 2: Humans rank these outputs by quality;
Step 3: Train a reward model to predict human preferences / ranking, given full model responses;
Step 4: Use RL (e.g. PPO, GRPO) to fine-tune the model to maximize the reward model’s scores.

Response 1

Response 2

Response 3

Reward? 

Reward? 

Reward? 
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Human Ranking and Reward Model

Can’t have humans write gold answers to everything, so train a reward model to predict human preferences
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Human preferences are noisy and uncalibrated
Solution: Relative preference tuning via pairwise comparisons
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x

Cambridge is a historic city in 

Cambridgeshire, England, located on 

the River Cam about 55 miles north of 

London, with a population of 145,700 

and a broader built-up area housing 

about 181,137 people. It was a 

significant trading center in Roman 

and Viking times, received its first 

town charters in the 12th century, and 

officially became a city in 1951.

Cambridge is a tiny village 

in northern England with 

absolutely no historical 

significance. It has never 

been granted any form of city 

status.

is better than

Human Ranking and Reward Model
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The RL Part: PPO
3 components:

1. Actor model/policy: LLM that has been pre-trained and supervised fine-tuned;
2. Reward model: Trained and frozen model that predicts human preference as a scalar reward, given full 
model responses;
3. Value model/critic: Learnable value function takes in partial model responses and predicts scalar reward.

Recall Actor-critic models!!

Actor: decides what actions to take

Critic: evaluates how good the action is 
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The RL Part: PPO
Algorithm:
1. Generate responses: LLM produces multiple responses for a given prompt;
2. Score responses: The reward model assigns reward for each response;
3. Compute advantages A(s,a) = Q(s,a) - V(s). How much better a specific action a (i.e., word) is compared 
to an average action the policy will take in state s (i.e., prompt + generated words so far).
4. Optimize policy: Update the LLM by optimizing the PPO objective (KL + clip to penalize large changes);
5. Update value: train the value function to be better at predicting the rewards given partial responses.
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GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]
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GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]

Key differences:
1. Group of responses used to compute advantage and gradient updates.
2. No learned value function, just simple statistics of rewards over a group.
3. Abandon reward models and use rule-based verifiers (binary checks, test-cases, length, format).
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- Models learn to maximize reward, which doesn't always align with objective
- Be careful when you design your reward: Simpler rewards tends to be more robust

35

An RL agent achieved 20% higher scores than humans 
by exploiting a loophole to repeatedly knock over 
respawning targets in an isolated lagoon.

An LLM hacks a chess engine for itself to win the game. 
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[OpenAI. Faulty reward functions in the wild, https://openai.com/index/faulty-reward-functions/]

Reward Hacking

https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/


GRPO (Deepseek R1)

[Guo et al. Deepseek-r1: Incentivizing reasoning capability in LLMs via reinforcement learning. arXiv 2025]
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Direct Preference Optimization
DPO is more efficient in terms of compute, speed, and engineering efforts.
DPO does not need to train a reward model, and during policy training it doesn’t
decode online responses (which is usually slow) or train an additional value model.

PPO trains on online data generated by the current policy, while DPO trains on static,
pre-generated offline data. This may limit exploration in DPO and hurt the training.
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[Rafailov et al. Direct preference optimization: Your language model is secretly a reward model. NeurIPS 2023]



Tips and Training for Reinforcement Learning

1. Sanity Check with Fixed Policy

2. Monitor KL Divergence (in PPO-like algorithms)

3. Plot Entropy Over Time

4. Use Greedy Rollouts for Evaluation

5. Debug Value Function Separately: Visualize predicted vs. actual return

6. Gradient Norm Clipping is Crucial
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Tips and Training for Reinforcement Learning

7. Check Advantage Distribution

8. Train on a Frozen Replay Buffer

9. Use Curriculum Learning: Gradually increase task difficulty or reward sparsity 

10. Watch for Mode Collapse in MoE or Multi-Head Policies
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Assignments for This Coming Week

This Thursday (5/8): final project presentations.

- Class from 1-3pm, let us know any time constraints.

Final project reports due 5/20 – 12 days to incorporate feedback from presentations 

Meet with me and TAs today after class.
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